Continuous selection theorem, coincidence theorem, and generalized equilibrium in L-convex spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coincidence point theorem in ordered fuzzy metric spaces and its application in integral inclusions

The purpose of this paper is to present some coincidence point and common  fixed point theorems for multivalued contraction maps in complete fuzzy  metric spaces endowed with a partial order. As an application, we give  an existence theorem of solution for general classes of integral  inclusions by the coincidence point theorem.

متن کامل

Selection Theorem in L

Let F be a multifunction from a metric space X into L, and B a subset of X . We give sufficient conditions for the existence of a measurable selector of F which is continuous at every point of B. Among other assumptions, we require the decomposability of F (x) for x ∈ B.

متن کامل

Riesz Type Theorem in Locally Convex Spaces

The present paper is concerned with some representatons of linear mappings of continuous functions into locally convex vector spaces, namely Theorem. If X is a complete Hausdorff locally convex vector space, then a general form of weakly compact mapping T : C[a, b] → X is of the form Tg = ∫ b a g(t)dx(t), where the function x(·) : [a, b] → X has a weakly compact semivariation on [a, b]. This th...

متن کامل

Transversal spaces and common fixed point Theorem

In this paper we formulate and prove some xed and common xed pointTheorems for self-mappings dened on complete lower Transversal functionalprobabilistic spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2002

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(02)00132-3